Xxlove cam


For our experiment, we selected 600 authors for whom we were able to determine with a high degree of certainty a) that they were human individuals and b) what gender they were.

In the following sections, we first present some previous work on gender recognition (Section 2). Currently the field is getting an impulse for further development now that vast data sets of user generated data is becoming available. (2012) show that authorship recognition is also possible (to some degree) if the number of candidate authors is as high as 100,000 (as compared to the usually less than ten in traditional studies).Two other machine learning systems, Linguistic Profiling and Ti MBL, come close to this result, at least when the input is first preprocessed with PCA. Introduction In the Netherlands, we have a rather unique resource in the form of the Twi NL data set: a daily updated collection that probably contains at least 30% of the Dutch public tweet production since 2011 (Tjong Kim Sang and van den Bosch 2013).However, as any collection that is harvested automatically, its usability is reduced by a lack of reliable metadata.The general quality of the assignment is unknown, but in the (for this purpose) rather unrepresentative sample of users we considered for our own gender assignment corpus (see below), we find that about 44% of the users are assigned a gender, which is correct in about 87% of the cases.Another system that predicts the gender for Dutch Twitter users is Tweet Genie ( that one can provide with a Twitter user name, after which the gender and age are estimated, based on the user s last 200 tweets.2009) managed to increase the gender recognition quality to 89.2%, using sentence length, 35 non-dictionary words, and 52 slang words.

You must have an account to comment. Please register or login here!